

NOTA TÉCNICA PARA EL USO DEL PRECIO SOCIAL DE CARBONO EN LA EVALUACIÓN SOCIAL DE PROYECTOS DE INVERSIÓN EN TIPOLOGÍAS: GENERACIÓN ELÉCTRICA RENOVABLE, TRATAMIENTOS DE AGUAS RESIDUALES Y RELLENOS SANITARIOS CON SISTEMA DE CAPTURA Y QUEMA DE BIOGÁS

2021

in**◊**ierte.pe

Nota Técnica para el uso del Precio Social de Carbono en la Evaluación Social de Proyectos de Inversión en Tipologías: Generación eléctrica renovable, tratamientos de aguas residuales y rellenos sanitarios con sistema de captura y quema de biogás

Ministerio de Economía y Finanzas Dirección General de Programación Multianual de Inversiones - DGPMI

Primera Versión: Julio 2021

© Ministerio de Economía y Finanzas - MEF Dirección General de Programación Multianual de Inversiones - DGPMI

La información contenida en este documento puede ser reproducida total o parcialmente, siempre y cuando se mencione la fuente de origen y se envíe un ejemplar al Ministerio de Economía y Finanzas del Perú – MEF

Contenido

I. Lis	sta de Abrev	aciones y Acrónimos 5
II. Ir	ntroducción .	6
1.	Marco Cond	ceptual
2.	Precio Soci	al del Carbono 8
		orporación del Precio Social del Carbono en PI del sector de generación novable9
	2.1.1 Cua	ntificación de emisiones GEI para la situación con y sin proyecto de inversión10
	2.1.1.1	Cuantificación de emisiones GEI para la situación sin proyecto de inversión 10
	2.1.1.2 inversión	Cuantificación de emisiones GEI generadas para la situación con proyecto de12
	2.1.2 Case	práctico N° 01: Generación de energía eléctrica13
	2.1.1.2 Cuantificación de emisiones GEI generadas para la situación con proyecto de inversión	
		Segundo paso: Cuantificación de las emisiones GEI en la situación sin proyecto ón14
		Tercer paso: Cuantificación de las emisiones GEI generadas en la situación con de inversión15
	2.1.2.4	Cuarto paso: Valorización del beneficio por reducción de emisiones GEI 15
	2.1.3 Apli	cativo: Calculo del costo por externalidades causadas por emisiones de GEI 15
	2.2.1 Des	cripción actual del servicio de tratamiento de aguas residuales17
	2.2.2 Cua	ntificación de emisiones GEI para la situación con y sin proyecto de inversión17
	2.2.3.1 inversión	Cuantificación de emisiones GEI totales para la situación sin proyecto de19
	2.2.3.2 inversión	Cuantificación de las emisiones GEI totales en la situación con proyecto de20
	2.2.4 Case	o Práctico N° 02: Planta de Tratamiento de Aguas Residuales21
	2.2.4.1	Primer paso: Cuantificación de la demanda del proyecto de inversión 21
	2.2.4.2 de inversi	Segundo paso: Cuantificación de las emisiones GEI en la situación sin proyecto ón23
	2.2.4.3 de inversi	Tercer paso: Cuantificación de las emisiones GEI en la situación con proyecto ón25
	2.2.4.4	Cuarto paso: Valorización del beneficio por reducción de emisiones GEI 25
	2.2.5 Apli	cativo: Calculo del costo por externalidades causadas por emisiones de GEI 25
		orporación del Precio Social del Carbono en proyectos de inversión de rellenos on sistema de captura y quema de biogás26
	2.3.1 Des	cripción actual del servicio de tratamiento de rellenos sanitarios27

2	2.3.2 Cuar	ntificación de emisiones GEI para la situación con y sin proyecto de inversiór	ւ27
·-	2.3.2.1 inversión	Cuantificación de emisiones GEI totales para la situación sin proyecto	
		Cuantificación de emisiones GEI totales para la situación con proyecto	
2	2.3.3 Caso	práctico N° 04: Gestión Integral de los Residuos Sólidos	30
2	2.3.3.1	Primer paso: Cuantificación de la demanda del proyecto de inversión	31
	2.3.3.2 proyecto d	Segundo paso: Cuantificación de emisiones GEI totales para la situación le inversión	
		Tercer paso: Cuantificación de las emisiones GEI en la situación con proye	
2	2.3.3.4	Cuarto paso: Valorización del beneficio por reducción de emisiones GEI	33
2	2.3.4 Aplic	cativo: Calculo del costo por externalidades causadas por emisiones de GEI	34
Bibliog	rafía		35
Tabl	las		
Tabla 1	L: Precio So	ocial del Carbono	8
Tabla 2	2: Cuantific	cación de la oferta sin y con proyecto de inversión	13
Tabla 3	3: Cuantific	cación de las emisiones GEI en la situación sin proyecto de inversión	14
Tabla 4	1: Valoriza	ción del beneficio por emisiones GEI evitadas	15
Tabla 5	5: Tasas de	producción de metano por tecnología de tratamiento de aguas residuales .	18
Tabla 6	6: Cuantific	cación de la demanda con proyecto de inversión	21
Tabla 7	7: Producci	ión anual de metano	22
Tabla 8	3: Generac	ión de electricidad por quema de metano	23
Tabla 9	9: Cuantific	cación de emisiones GEI por recolección y quema de metano	24
Tabla 1	LO: Cuantif	icación de emisiones GEI evitadas por generación de electricidad	24
Tabla 1	L1: Emisior	nes GEI evitadas totales en la situación sin proyecto de inversión	25
Tabla 1	L2: Valoriz	ación del beneficio por reducción de emisiones GEI	25
Tabla 1	L3: Cuantif	icación de la demanda del proyecto de inversión	31
Tabla 1	L4: Produc	ción anual de metano	32
Tabla 1	L5: Cuantif	icación de emisiones GEI en la situación sin proyecto de inversión	32
Tabla 1	L6: Cuantif	icación de emisiones GEI en la situación con proyecto de inversión	33
Tabla 1	L7: Valoriz	ación del beneficio por reducción de emisiones GEI	33

I. Lista de Abreviaciones y Acrónimos

DGPMI Dirección General de Programación Multianual de Inversiones

GEI Gases de efecto invernadero

PI Proyecto de Inversión

PSC Precio Social del Carbono

PTAR Planta de Tratamiento de Aguas Residuales

VANS Valor Actual Neto Social

II. Introducción

La evaluación social de un Proyecto de Inversión es un proceso de identificación, medición y valoración de los beneficios y costos para determinar la rentabilidad que este pueda generar para la sociedad en su conjunto. Para obtener esta rentabilidad social no se consideran transferencias y se deben realizar correcciones debido a distorsiones presentes en los mercados a través del uso de los precios sociales.

El Ministerio de Economía y Finanzas (MEF), a través de la DGPMI tiene la función de elaborar los lineamientos de política de tratamiento de la inversión pública. En ese sentido, formula, propone y aprueba las normas, lineamientos y procedimientos en materia de inversión pública.

Entre sus funciones están las de emitir los contenidos aplicables a las fichas técnicas y a los estudios de preinversión, las metodologías generales y los parámetros de evaluación para la formulación y evaluación ex ante de los PI, teniendo en cuenta su nivel de complejidad, con independencia de su modalidad de ejecución.

En ese sentido, el presente documento tiene como objetivo presentar, a las Unidades Formuladoras de PI, el uso adecuado del precio social del carbono en la evaluación social de los PI en la fase de Formulación y Evaluación a través de casos hipotéticos para calcular los beneficios y costos sociales generados por las externalidades de los PI en el marco del Sistema Nacional de Programación Multianual y Gestión de Inversiones.

Cabe aclarar que los casos expuestos en la presente Nota Técnica son resúmenes recogidos de la consultoría "Metodología para la aplicación del Precio Social del Carbono en la evaluación social de proyectos de inversión por tipología seleccionada", un proyecto en conjunto entre la Cooperación Alemana para el Desarrollo, GIZ y la Agencia de los Estados Unidos para el Desarrollo Internacional, USAID realizado en el año 2018.

Finalmente, acompañando a este documento se está publicando un aplicativo en una hoja de cálculo que automatiza el cálculo de los costos y beneficios sociales utilizando este parámetro.

1. Marco Conceptual

Tal como se indicó en la introducción, la evaluación social de PI es un proceso de identificación, medición y valoración de los beneficios y costos para determinar la rentabilidad que este pueda generar para la sociedad en su conjunto. Para obtener esta rentabilidad, a diferencia de la evaluación privada, no se consideran transferencias¹ entre los diferentes miembros de la sociedad, se deben realizar correcciones a través del uso de los precios sociales debido a distorsiones presentes en los mercados (beneficios y costos directos), medición y valorización de beneficios y costos indirectos, y externalidades positivas o negativas.

De acuerdo a Fontaine (2008)² para el cálculo de los beneficios y costos sociales directos se deben considerar los efectos que tiene la producción del bien o servicio del proyecto sobre la sociedad (precios sociales de la producción) y de los efectos que el proyecto ocasiona por el hecho de utilizar los insumos (precio social de los insumos).

En ese sentido, **los precios sociales de la producción** de bienes o servicios miden el verdadero efecto económico que la producción del PI tiene sobre la sociedad. Este efecto se manifiesta, porque dicha producción: i) aumenta la disponibilidad del bien o servicio en la sociedad, y/o ii) disminuye la cantidad producida del bien o servicio por otros productores.

Asimismo, los **precios sociales de los insumos** utilizados por el PI miden el verdadero costo económico que enfrenta la sociedad de realizar el PI. Este efecto proviene de: i) la menor producción de otros bienes como consecuencia que el PI distrae estos insumos de otros usos, y/o ii) los recursos que el país debe destinar para satisfacer lo demandado por el PI.

Por tal motivo, los precios sociales pueden diferir de los privados, principalmente por las siguientes razones (Fontaine, 2008): (i) cuando no hay precio debido a que cobrar es más caro que no hacerlo (existencia de bienes públicos), (ii) impuestos o subsidios distorsionadores en los mercados de productos e insumos, (iii) poder monopólico o monopsónico en los mercados de productos e insumos, y (iv) externalidades en los mercados de insumos y productos (lo cual es poco usual). En ese sentido, los precios sociales representan la valoración económica de los beneficios y costos económicos, que el proyecto impone a la sociedad en su conjunto, por el hecho de producir bienes y utilizar insumos³.

¹ Recursos que se destinan de un agente económico hacia otro, por ejemplo, el impuesto a las utilidades es un costo para la evaluación privada pero no para la evaluación social, debido a que es un ingreso para el fisco.

² Fontaine, Ernesto R. (2008). Evaluación Social de Proyectos. Pearson Educación de México.

³ Estos precios -también llamados "sombra" o de "eficiencia"- son iguales a los precios privados cuando existen mercados de competencia perfecta, ausencia total de distorsiones y pleno empleo.

2. Precio Social del Carbono

Este precio social permite incorporar la medición monetaria externalidades que producen los PI sobre el medio ambiente (externalidad positiva o negativa), en la evaluación social de PI, a través de la asignación de valor a las variaciones de emisiones de GEI, en su equivalente en dióxido de carbono (CO2 eq.), que se generan cuando se ejecutan determinadas tipologías de PI.

Su uso permite que alternativas más amigables al medio ambiente sean más "competitivas" al momento de realizar la evaluación social frente a otras opciones tecnológicas, debido a que el VANS captura el efecto positivo de reducción en emisiones de dióxido de carbono. De manera opuesta, alternativas menos amigables con el medio ambiente pueden ser "castigadas" en la evaluación social debido a que se refleja un mayor costo en la estimación del VANS.

El cálculo que se obtiene para el Precio Social del Carbono es de US\$ 7.17 por tonelada de CO2.

Tabla 1: Precio Social del Carbono

Parámetro	(US\$ por tonelada de carbono)
Precio social del carbono (CO ₂)	7.17

Fuente: CIUP, 2016.

¿Cuáles son los PI que potencialmente usan este parámetro?

Los PI que potencialmente usan este parámetro son:

- Generación de energía eléctrica
- Transporte ferroviario
- Transporte público urbano masivo
- Transporte hidroviario
- Gaseoductos
- Abastecimiento de agua potable
- Tratamientos de aguas residuales
- Tratamiento de residuos sólidos
- Ecosistemas forestales degradados
- Apoyo al desarrollo productivo cuando presenten cambio de cedula de cultivos
- Recuperación de ecosistemas degradados
- Todos los PI que tengan como externalidades la emisión de GEI

Dado que este parámetro valoriza las externalidades positivas y negativas de las emisiones de GEI, se aplica para ambas metodologías de evaluación social: Costo-Beneficio, Costo-Eficacia y Costo Efectividad.

Procedimiento general para el cálculo de las externalidades positivas y negativas del Precio Social del Carbono

Se realiza en 4 pasos.

1 Primer paso:

- Se identifica si la producción del bien o servicio está relacionada con la emisión de (GEI).
- Se cuantifica la oferta y/o demanda del servicio que se pretende intervenir con el PI. Este paso se realiza en la fase de Formulación y Evaluación del PI.
- 2 Segundo paso: Se cuantifica la emisión de GEI sin PI.
- 3 Tercer paso: Se cuantifica la emisión de GEI con PI.
- 4 Cuarto paso: Se valorizan los incrementos (costos) o reducciones (beneficios) de los GEI.

2.1 Incorporación del Precio Social del Carbono en PI del sector de generación eléctrica renovable

En el caso del sector de generación eléctrica se ha considerado la aplicación de la metodología general de incorporación del PSC en la tipología de instalaciones de generación de energía renovable. La presente metodología está basada en la metodología "ACM0002 - Grid-connected electricity generation from renewable sources" del Mecanismo de Desarrollo Limpio (MDL) de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC).

Cabe mencionar que la aplicación del beneficio por reducción de emisiones de GEI de esta metodología es aplicable únicamente a PI de equipamiento, rehabilitación (o renovación), reemplazo o adición de capacidad de plantas eléctricas renovables existentes o a PI de construcción y operación de nuevas plantas que utilicen fuentes de energía renovable, que suministren electricidad a la red.

Concretamente, esta metodología contempla las siguientes tecnologías renovables de generación:

- Hidráulica, con y sin reservorio de agua;
- Eólica, tanto terrestre como marina;
- Solar, tanto fotovoltaica como termoeléctrica;
- Undimotriz y mareomotriz.

En el caso de las centrales hidroeléctricas, para que la aplicación del beneficio por reducción de emisiones de GEI de esta metodología sea aplicable, se han de cumplir las condiciones siguientes:

- I. La densidad de potencia calculada utilizando la capacidad instalada total del PI integrado, es mayor que 4 W/m2. La capacidad instalada de la(s) planta(s) eléctrica(s) con una densidad de potencia inferior o igual a 4 W/m2 será:
 - a. Menor o igual a 15 MW; y
 - b. Menor del 10 por ciento de la capacidad instalada total del PI hidroeléctrico integrado
- II. El flujo de agua entre reservorios no es utilizado por ninguna otra unidad hidroeléctrica que no sea parte de la actividad del PI.

2.1.1 Cuantificación de emisiones GEI para la situación con y sin proyecto de inversión

2.1.1.1 Cuantificación de emisiones GEI para la situación sin proyecto de inversión

Las emisiones GEI para la situación sin PI incluyen sólo las emisiones de CO₂ de la generación de electricidad en las c<u>entrales eléctricas de combustibles fósiles</u> que se consideran desplazadas en la generación debido a la actividad del PI. La metodología supone que toda la generación de electricidad del PI por encima de los niveles de referencia habría sido generada por las <u>centrales eléctricas</u> (de <u>combustibles fósiles</u>) existentes conectadas a la red y por la adición de nuevas <u>centrales eléctricas</u> conectadas a la red.

Las emisiones sin PI se calculan según la siguiente ecuación:

$$EGEI_{sp.i} = FE_{res} * GE_{cp.i}$$

Donde:

 $EGEI_{sn.i}$: Emisiones de GEI sin PI en el año i (t $CO_2/año$)

 $GE_{cp,i}$: Cantidad de generación neta de electricidad que se produce y vierte a la red

como resultado de la implementación del PI en el año i (MWh/año).

 FE_{res} : Factor de emisión de CO_2 de margen combinado para la generación de

energía conectada a la red en el año i, calculado utilizando la última versión de la "TOOLO7: Tool to calculate the emission factor for an electricity system"

del MDL (t CO₂ / MWh).

El cálculo de $GE_{cp,i}$ varía en función de si se trata de PI de (i) construcción de nuevas instalaciones de generación renovable, (ii) aumento de la capacidad en instalaciones eólicas, solares, undimotrices y mareomotrices o (iii) rehabilitación o renovación de centrales existentes (de cualquier tecnología válida) y aumento de la capacidad en centrales hidroeléctricas.

Veremos cada uno de los casos a continuación:

(i) Nuevas instalaciones de generación renovable

Si el PI es la construcción de una nueva instalación de generación renovable, entonces:

$$GE_{cp,i} = GE_{instalaci\acute{o}n,i}$$

Donde:

 $GE_{cp,i}$: Cantidad de generación neta de electricidad que se produce y vierte a la red

como resultado de la implementación del PI en el año i (MWh/año).

 $\mathit{GE}_{instalación,i}$: Cantidad de generación neta de electricidad que es suministrada a la red por

la planta/unidad del PI en el año i (MWh/año).

(ii) Aumento de la capacidad en instalaciones eólicas, solares, undimotrices y mareomotrices

En el caso de instalaciones eólicas, solares, undimotrices y mareomotrices, se asume que la adición de nueva capacidad no afecta significativamente la electricidad generada por las plantas/unidades existentes. En este caso, la electricidad vertida a la red por las plantas/unidades de energía agregadas se medirá directamente y se usará para determinar $GE_{cn,i}$.

$$GE_{cp,i} = GE_{instalación,i}$$

Donde:

 $\mathit{GE}_{\mathit{cp,i}}$: Cantidad de generación neta de electricidad que se produce y vierte a la red

como resultado de la implementación del PI en el año i (MWh/año).

 $\mathit{GE}_{instalación,i}$: Cantidad de generación neta de electricidad que es suministrada a la red por

la planta/unidad que se ha añadido como resultado de la implementación del

PI en el año i (MWh/año).

(iii) Rehabilitación o renovación de centrales existentes (de cualquier tecnología válida) y aumento de la capacidad en centrales hidroeléctricas

Si la actividad del PI es la modernización o rehabilitación o reemplazo de una planta de energía renovable conectada a la red existente, la metodología utiliza datos históricos de generación de electricidad para determinar la generación de electricidad por la planta existente en el escenario sin PI, asumiendo que la situación histórica observada antes de la implementación del PI continuaría.

Adicionalmente, en el caso de plantas/unidades hidroeléctricas, la adición de nuevas plantas/unidades eléctricas puede afectar significativamente la electricidad generada por las plantas/unidades existentes.

Por ejemplo, una nueva turbina hidráulica instalada en una presa existente puede afectar la generación de energía de las turbinas existentes. Por lo tanto, la siguiente ecuación se ha de emplear para determinar $GE_{cp,i}$ en todos los PI de aumento de capacidad, rehabilitación y renovación de instalaciones hidroeléctricas ya existentes.

$$GE_{cp,i} = GE_{instalación,i} - (GE_{histórica,i} + \sigma_{histórica})$$

Donde:

 $\mathit{GE}_{cp,i}$: Cantidad de generación neta de electricidad que se produce y vierte a la red

como resultado de la implementación del PI en el año i (MWh/año).

 $\mathit{GE}_{instalación,i}$: Cantidad de generación neta de electricidad que es suministrada a la red por

la planta/unidad del PI en el año i (MWh/año).

 $GE_{histórica,i}$: Generación de electricidad neta media anual histórica vertida a la red por las

plantas/unidades de generación renovable existentes que se operaban en el

sitio del PI antes de la implementación del mismo (MWh/año).

 $\sigma_{hist\'orica}$: Desviación estándar de la generación de electricidad neta media anual

histórica vertida a la red por las plantas/unidades de generación renovable existentes que se operaban en el sitio del PI antes de la implementación de

este (MWh/año).

En el caso de que $GE_{instalación,i} < (GE_{histórica,i} + \sigma_{histórica})$ en un año i, entonces $GE_{cp,i} = 0$.

La generación de electricidad a partir de fuentes energía renovable puede variar significativamente de un año a otro, debido a variaciones naturales en la disponibilidad del recurso. El uso de pocos años históricos para establecer la generación de electricidad de línea base puede implicar una incertidumbre significativa. La metodología aborda esta incertidumbre ajustando la generación de electricidad histórica por su desviación estándar.

 $GE_{hist\'orica,i}$ se puede determinar eligiendo entre dos períodos históricos. Esto permite cierta flexibilidad: el uso del período de tiempo más largo puede resultar en una desviación estándar más baja, mientras que el uso del período más corto puede permitir un mejor reflejo de las circunstancias técnicas observadas durante los años más recientes antes de la implementación del PI. Los dos periodos entre los que elegir para calcular $GE_{hist\'orica,i}$ son:

- 1. Los cinco últimos años calendario anteriores a la implementación de la actividad del PI; o
- 2. El período, siempre mayor a 5 años, que abarca hasta el último año calendario anterior a la implementación del PI, partiendo desde el año más próximo de:
 - a. La puesta en servicio de la planta/unidad;
 - b. Si corresponde: la última adición de capacidad a la planta/unidad; o
 - c. Si corresponde: la última modificación o rehabilitación de la planta / unidad.

En el caso de la rehabilitación donde la planta/unidad de energía no funcionó durante los últimos cinco años calendario antes de que comience la rehabilitación. $GE_{hist\'orica,i}=0$.

2.1.1.2 Cuantificación de emisiones GEI generadas para la situación con proyecto de inversión

Para la mayoría de las instalaciones de generación renovable, las emisiones de GEI del PI son nulas. Sin embargo, en los reservorios de agua para las instalaciones hidroeléctricas se producen procesos anaeróbicos descomposición de materia orgánica que producen emisiones de metano (CH₄).

Para los PI hidroeléctricos sin reservorio de agua o aquellos que no supongan el incremento de la superficie del reservorio existente, las emisiones de PI se consideran nulas. En el resto de los casos, las emisiones de GEI del PI serán:

$$EGEI_{cp,i} = EGEI_{hidro,i}$$

Donde:

 $EGEI_{cp,i}$: Emisiones de GEI del PI en el año i (t CO_2 eq/año).

 $EGEI_{hidro,i}$: Emisiones de GEI del PI procedentes de reservorios de agua de instalaciones

hidroeléctricas en el año i (t CO2eq/año).

 $EGEI_{hidro,i}$: se calcula en función de la densidad de potencia (DP), la cual se calcula a su vez según la siguiente ecuación:

$$DP = \frac{c_{cp} - c_{sp}}{A_{cp} - A_{sp}}$$

Donde:

DP : Densidad de potencia del PI (W/m²).

 c_{cp} : Capacidad instalada total de la instalación hidroeléctrica tras la implementación del PI (W).

 c_{sp} : Capacidad instalada total de la instalación hidroeléctrica antes de la implementación del PI (W). Para instalaciones hidroeléctricas nuevas, este valor es cero.

 A_{cp} : Área de los reservorios individuales o múltiples medidos en la superficie del agua, después de la implementación del PI, cuando el reservorio está lleno (m^2).

 A_{sp}

: Área de los reservorios individuales o múltiples medidos en la superficie del agua, antes de la implementación del PI, cuando el reservorio está lleno (m²). Para reservorios nuevos, este valor es cero.

Si la *DP* del PI, calculada mediante la siguiente Ecuación, es **mayor a 4 W/m² y menor o igual a 10 W/m²**, entonces:

$$EGEI_{hidro,i} = \frac{FE_{res} * GET_i}{1 \ 000}$$

Donde:

EGEI_{hidro.i} : Emisiones de GEI del PI procedentes de reservorios de agua (t CO₂eq/año).

 FE_{res} : Factor de emisión por defecto para emisiones procedentes de reservorios de agua de

instalaciones hidroeléctricas (90 kg CO₂eq/MWh)⁴.

 GET_i : Electricidad total producida por el PI, incluyendo la electricidad vertida a la red y la

electricidad consumida en cargas internas, en el año i (MWh).

Si la DP es mayor a 10 W/m², entonces $EGEI_{hidro,i} = 0$.

2.1.2 Caso práctico N° 01: Generación de energía eléctrica⁵

El PI de repotenciación de la Central Hidroeléctrica del Mantaro es un PI de ampliación (aumento de capacidad) de la central de generación eléctrica basada en tecnología hidroeléctrica, lo que califica al PI como de generación eléctrica renovable.

2.1.2.1 Primer paso: Cuantificación de la oferta sin y con proyecto de inversión

Lo primero que se debe realizar es si la producción del bien o servicio está vinculado a la emisión de GEI, dado que este si es el caso se procede con la siguiente actividad.

Se calcula la oferta en la situación sin PI; es decir, la actual generación de electricidad que es producida y vertida a la red por la central, cuya capacidad será ampliada y será expresada en MWh/año.

En la situación con PI, la oferta está constituida por la generación de electricidad de la nueva instalación expresada en MWh/año⁶.

Tabla 2: Cuantificación de la oferta sin y con proyecto de inversión

Año	Producción anual media de electricidad con Pl MWh/año	Producción anual media de electricidad sin Pl MWh/año	Producción eléctrica neta por implementación del PI MWh/año
0	WWW, dile	WWW, dile	- -
1	8,235,040	6,575,100	1,659,940
2	8,235,040	6,575,100	1,659,940
3	8,235,040	6,575,100	1,659,940

^{4 (}MDL, 2018).

⁵ La información de esta sección ha sido extraída de GIZ, (2018, a).

⁶ Para el caso de instalaciones eólicas, solares, undimotrices, mareomotrices o centrales hidroeléctricas

Año	Producción anual media de electricidad con Pl MWh/año	Producción anual media de electricidad sin Pl MWh/año	Producción eléctrica neta por implementación del PI MWh/año
10	8,235,040	6,575,100	1,659,940
15	8,235,040	6,575,100	1,659,940
20	8,235,040	6,575,100	1,659,940
25	8,235,040	6,575,100	1,659,940
30	8,235,040	6,575,100	1,659,940

Nota: Recordar que esta es información se obtiene en la fase de Formulación y Evaluación del PI.

De acuerdo con datos suministrados por ElectroPerú –empresa a cargo de este PI– la producción media anual de electricidad en las condiciones actuales de la central asciende a 6'575,100 MWh/año, mientras que con el PI se espera aumentar la producción a 8'235,040 MWh/año. De esta manera, la producción eléctrica neta por la implementación del PI asciende a 1'659,940 MWh/año y se mantiene constante durante todo el horizonte de evaluación del PI que es de 30 años.

2.1.2.2 Segundo paso: Cuantificación de las emisiones GEI en la situación sin proyecto de inversión⁷

Dado que el PI implica la producción de 1'659,940 MWh/año de la planta del Mantaro, eso no implica que esa cantidad no es producida actualmente, sino que esta electricidad es producida por centrales eléctricas que utilizan combustibles fósiles.

En ese sentido, en el cálculo de las emisiones sin PI se considera que el incremento de la producción de electricidad mediante la hidroeléctrica va a reemplazar la generación de electricidad de las centrales eléctricas que utilizan combustibles fósiles. De esta manera la cuantificación de las emisiones GEI sin PI resulta del producto de la producción eléctrica neta debido a la implementación del PI de ampliación y el factor de emisión del Sistema Eléctrico Interconectado Nacional (SEIN) igual a 0.4521 ton CO₂/MWh. Estos cálculos se muestran en la Tabla 06.

Tabla 3: Cuantificación de las emisiones GEI en la situación sin proyecto de inversión

Año	Producción eléctrica neta x implementación del PI	Factor de emisión del SEIN	Emisiones GEI por implementación del PI
	MWh/año	ton CO ₂ /MWh	ton CO₂/año
0	-		=
1	1,659,940	0.4521	750,492
2	1,659,940	0.4521	750,492
3	1,659,940	0.4521	750,492
10	1,659,940	0.4521	750,492
15	1,659,940	0.4521	750,492
20	1,659,940	0.4521	750,492
25	1,659,940	0.4521	750,492
30	1,659,940	0.4521	750,492

-

⁷ El cálculo de GEI varía en función de si se trata de proyectos de (i) construcción de nuevas instalaciones de generación renovable, (ii) aumento de la capacidad en instalaciones eólicas, solares, undimotrices y mareomotrices o (iii) rehabilitación o renovación de centrales existentes (de cualquier tecnología válida) y aumento de la capacidad en centrales hidroeléctricas. Para mayor detalle ver anexo 1.

2.1.2.3 Tercer paso: Cuantificación de las emisiones GEI generadas en la situación con proyecto de inversión⁸

Del segundo paso se conoce que si el PI de ampliación no se ejecuta la emisión de GEI anual seria de 750 492 ton CO₂/año; sin embargo, la ejecución del PI y posterior funcionamiento también implica una emisión de GEI.

Para PI hidroeléctricos sin reservorio de agua o aquellos que no supongan el incremento de la superficie del reservorio existente, las emisiones de PI se consideran nulas. En este caso del PI de repotenciación de la Central Hidroeléctrica del Mantaro, es cero debido a que se utilizará la misma área de reservorios.

2.1.2.4 Cuarto paso: Valorización del beneficio por reducción de emisiones GEI

Para valorizar los beneficios obtenidos por la reducción de emisiones GEI se obtiene la diferencia entre las cantidades totales de emisiones GEI en la situación sin PI y las cantidades totales de emisiones GEI con PI y multiplicar esa diferencia por US\$ 7.17 por tonelada equivalente de CO₂, que es el valor del PSC estipulado en el Anexo N° 11: Parámetros de Evaluación Social de la Directiva N° 001-2019-EF/63.01, Directiva General del Sistema de Programación Multianual y Gestión de Inversiones⁹ y el tipo de cambio vigente.

Tabla 4: Valorización del beneficio por emisiones GEI evitadas

Año	Emisiones GEI en la situación sin PI	Emisiones GEI en la situación con PI	Precio social del carbono	Beneficio anual por emisiones GEI evitadas	Beneficio anual por emisiones GEI evitadas
	ton CO ₂ /año	ton CO ₂ /año	US\$/ton CO ₂	US\$/año	S./año
0	-	-		-	-
1	750,492	-	7.17	5,381,028	17,757,393
2	750,492	-	7.17	5,381,028	17,757,393
3	750,492	-	7.17	5,381,028	17,757,393
10	750,492	-	7.17	5,381,028	17,757,393
15	750,492	-	7.17	5,381,028	17,757,393
20	750,492	-	7.17	5,381,028	17,757,393
25	750,492	-	7.17	5,381,028	17,757,393
30	750,492	-	7.17	5,381,028	17,757,393

Nota: para el cuadro se utilizó como tipo de cambio S/ 3.3 por dólar.

2.1.3 Aplicativo: Calculo del costo por externalidades causadas por emisiones de GEI

En el aplicativo solo se debe registrar la producción anual media de electricidad (con y sin PI), el horizonte de evaluación, el tipo de cambio, capacidad instalada de la UP y área de sus reservorios con y sin PI. Para este caso el PI otorga un beneficio de S/ 17.8 millones al año.

⁸ Para ver el cálculo de las emisiones de GEI con proyecto de diferentes naturalezas de la tipología de generación eléctrica ver el Anexo N°1.

⁹ Aprobada por la Resolución Directoral N° 001-2019-EF/63.01, y modificatorias.

Cálculo del costo por externalidades causadas por emisiones de efecto invernadero: Generación de Energía Eléctrica

<u>Año</u>	Producción anual media de electricidad con proyecto	Producción anual media de electricidad sin proyecto	Producción eléctrica neta por implementación del proyecto	Emisiones GEI sin proyecto	Emisiones GEI con proyecto	Emisiones GEI evitadas con la implementación del proyecto	Beneficio anual por emisiones GE evitadas
	MWh/año	MWh/año	MWh/año	ton CO2/año	ton CO2/año	ton CO2/año	S./año
0			-				
1	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
2	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
3	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
4	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
5	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
6	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
7	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
8	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
9	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
10	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
11	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
12	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
13	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
14	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
15	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
16	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
17	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
18	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
19	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
20	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
21	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
22	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
23	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
24	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
25	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,6
26	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
27	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,66
28	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
29	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60
30	8,235,040	6,575,100	1,659,940	750,459	0	750,459	17,756,60

Horizonte de Evaluación	años	30
Tipo de cambio	s/.	3.3
Precio Social del carbono	US\$/ton CO2	7.17
Factor de emisión (FE)	t CO2eq/MWh	0.09
Factor de emisión del SEIN	ton CO2/MWh	0.4521
Сср	W	1100
Csp	W	800
Аср	m ²	1000
Asp	m ²	1000
DP	W/m ²	N.A.

2.2 Incorporación del Precio Social del Carbono en proyectos de inversión de tratamientos de aguas residuales

En el año de 2015, de las 253 localidades en el área de las Empresa Prestadora de Servicios de Saneamiento (EPS) de Perú, 89 no tenían tratamiento de aguas residuales, lo que significa que el agua residual cruda es descargada directamente en los cursos de agua. En los otros 164 locales, toda o parte de las aguas residuales conectadas al sistema de alcantarillas se conduce a una PTAR.

La tecnología del tratamiento secundario por lagunas facultativas es la más aplicada en el Perú (100 PTAR). En general, la tecnología de lagunas de estabilización (lagunas anaerobias, facultativas) sin sistemas de aireación representa el 75% de todas las PTAR (SUNASS, 2015).

Los diversos sistemas de tratamiento anaerobio de aguas residuales pueden generar emisiones. La captura y quema de metano (biogás) o su aprovechamiento para la generación de energía en el tratamiento de aguas residuales y/o lodos en PTAR es una herramienta de reducción de las emisiones de GEI.

La decisión de capturar y promover la quema del metano y su aprovechamiento energético ya obtiene resultados positivos desde el punto de vista ambiental. En el caso de la quema de biogás de las PTAR, se reduce el CH_4 a CO_2 , poseyendo este último un potencial de calentamiento global 34 veces más bajo que el CH_4 y, por tratarse de emisiones procedentes de materia orgánica, se consideran neutras (IPCC, 2014).

El uso de biogás para generación de energía eléctrica reduce las emisiones por evitar el uso de energía de suministro tradicional. En caso de Perú, cada kWh evita la emisión de 0,452 kg CO₂eq (CDM, 2017).

En el caso del sector de saneamiento se ha considerado la aplicación de la metodología general de incorporación del PSC en las siguientes tipologías de PI.

- PI de recolección y quema del biogás de tecnologías anaerobias en PTAR.
- PI de recolección y quema del biogás de tecnologías anaerobias + generación de energía eléctrica de biogás en PTAR.

Cabe mencionar que la aplicación del beneficio por reducción de emisiones de GEI se aplica solamente a quema del biogás y generación de energía.

2.2.1 Descripción actual del servicio de tratamiento de aguas residuales

El servicio de tratamiento de aguas residuales consiste en tratar el agua recolectada que ha sido utilizada por los usuarios para finalmente disponerla en un cuerpo receptor o en zonas donde pueda ser reutilizada (parques y jardines, riego de cultivos u otros usos).

Para ello es requerido que se describan las condiciones actuales en las cuales se brinda este servicio, a saber:

- Proporción de las aguas residuales que se vierten a las tuberías de alcantarillado que reciben tratamiento.
- Calidad del efluente que sale de las PTAR y nivel de cumplimiento de los estándares vigentes (LMP y ECA).
- Cantidad de atoros en las redes de alcantarillado (por km).
- Cantidad de reclamos de los usuarios por el servicio de alcantarillado sanitario (por mil conexiones).
- Interrupciones del servicio y sus causas.

2.2.2 Cuantificación de emisiones GEI para la situación con y sin proyecto de inversión

La demanda de este servicio está dada por la necesidad de dicho servicio por parte de la población que se ubica en el área de influencia del PI (existente y futura), expresada en términos de cantidad y calidad. Ésta debe estimarse para los años de postinversión contemplados en el horizonte de evaluación.

El ratio de uso de los servicios de tratamiento de aguas residuales son las unidades de volumen, que se consumen por conexión, por lo general, se expresan en m³ o l/s.

Para estimar la demanda se debe conocer lo siguiente:

- Los servicios por brindar en la fase de Funcionamiento del PI y su unidad de medida.
- La población demandante y los factores que explican la demanda y no demanda de los servicios (en el caso de no proyectarse la cobertura al 100% se deberá explicar por qué el PI no cubriría la totalidad de la brecha de población no servida, y cuáles son los impedimentos).
- Los ratios de uso de los servicios (cobertura, consumos, etc.)

Para el análisis de la demanda, se recurre a la información obtenida en el diagnóstico de los involucrados, fundamentalmente de los grupos que se encuentran afectados por el problema que se quiere resolver (conectados y no conectados a la red del servicio público).

• Selección de la tecnología

La presente metodología es aplicable a las siguientes tecnologías de tratamiento de aguas residuales:

- Reactor anaeróbico de mantos de lodos de flujo ascendente (UASB, por sus siglas en inglés);
- Laguna anaeróbica;
- Digestores de lodo.

De este modo, la selección de la tecnología a ser implementada por la alternativa de solución recomendada incidirá en la aplicabilidad o no de la metodología.

Producción de metano

La herramienta metodológica *TOOL14 "Project and leakage emissions from anaerobic digesters"* (UNFCCC, 2017), se puede utilizar para calcular la producción de metano siempre y cuando se tengan mediciones reales de los caudales de biogás recolectados por las PTAR. Dicho cálculo se da por medio de la siguiente formula:

$$Q_{\text{CH}_4,i} = Q_{\text{biogás},i} * f_{\text{CH}_4,default} * \rho_{\text{CH}_4}$$

Dónde:

 $Q_{\mathrm{CH_4},i}$: Cantidad de metano producido en el año y (t CH₄)

 $Q_{{
m biog\acute{a}s},i}$: Cantidad de biogás recolectado en el año y (biogás Nm³)

 $f_{\mathrm{CH_4},default}$: Valor predeterminado para la fracción de metano en el biogás (m³ CH₄/m³

biogás)

 ρ_{CH_4} : Densidad de metano en condiciones normales (t CH₄/Nm³ CH₄)

Sin embargo, dado que aún no se tienen datos estadísticos suficientes de las cantidades de biogás recolectadas para los diferentes tipos de tecnologías de las PTAR operativas de Perú, es que se recomienda emplear las tasas típicas de producción de metano por habitante indicadas en la tabla de tasa de producción de metano por tecnología, las mismas que se muestran en la siguiente Tabla.

Tabla 5: Tasas de producción de metano por tecnología de tratamiento de aguas residuales

Tecnología	Tasas de producción de CH₄		
UASB	10.2	I CH₄/hab-día	
Laguna Anaerobia	9.4	I CH₄/hab-día	
Digestores de Lodo	10.8	I CH₄/hab-día	

Fuente: PROBIOGAS, 2015. Elaboración: Propia

Estas tasas de producción de metano deben ajustarse (calibrarse) a las características de Perú a medida que se tengan mediciones de biogás en condiciones de operación reales de las PTAR. De esta manera, la producción de metano es una función de la población atendida por el PI y calculada por la siguiente fórmula:

$$Q_{CH_4,i} = \frac{Pob_i \frac{TP_{CH_4}}{1000} * \rho_{CH_4}}{1000} * 365$$

Dónde:

 $Q_{CH_4,i}$: Cantidad de metano producido en el año i (t CH_4).

Pobi : Población objetivo del PI en el año i (hab).

 $TP_{CH_{4}}$: Tasa de producción diaria de metano por tipo de tecnología de

tratamiento de aguas residuales (I CH,/hab-día).

 ρ_{CH_4} : Densidad de metano en condiciones normales (kg/m³) (0.6670 kg/m³).

2.2.3 Generación de electricidad por quema de biogás (solo se utiliza cuando la tipología de PTAR incluye generación de energía eléctrica)

La producción anual de electricidad es el producto de la producción anual de metano por la energía potencial del metano y por la eficiencia de la tecnología de conversión del biogás en energía eléctrica de acuerdo con la siguiente formulación:

$$Q_{electricidad,i} = \frac{Q_{CH_4,i}*1000}{\rho_{CH_4}}*EP_{CH_4}*EE_{CH_4}$$

Dónde:

 $Q_{electr,i}$: Producción de electricidad por quema de metano (kWh/año).

 $Q_{CH_a,i}$: Producción de metano diaria (t $CH_a/a\tilde{n}o$).

 ρ_{CH_4} : Densidad de metano en condiciones normales (kg/m³) (0.6670 kg/m³).

 EP_{CH_4} : Energía potencial del metano (kWh/m³).

 $EE_{CH_{\lambda}}$: Eficiencia de la tecnología de conversión en energía eléctrica (%).

2.2.3.1 Cuantificación de emisiones GEI totales para la situación sin proyecto de inversión

Las emisiones GEI generadas en la situación sin PI corresponden a las emisiones de metano que son liberadas a la atmósfera producto del tratamiento anaerobio de las aguas residuales en las PTAR y que se podrían evitar mediante la recolección y quema del metano, más las emisiones GEI generadas en la producción de electricidad (utilizando combustibles fósiles) del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar si se genera electricidad a través de la quema de metano recolectado en la PTAR, tal como se especifica en la siguiente ecuación:

$$EGEI_{sp,i} = EGEI_{quema,i} + EGEI_{electr,i}$$

 $EGEI_{sp,i}$: Emisiones GEI totales en la situación sin PI en el año i (en t CO_2 eq/año).

 $\mathit{EGEI}_{\mathrm{quema},i}$: Emisiones GEI totales generadas en el año i por la liberación del metano

producido por el tratamiento anaerobio de las aguas residuales y que se podrían

evitar por la implementación del PI (en t CO₂eq/año).

 $EGEI_{electr,i}$

: Emisiones GEI totales generadas en el año i por el uso de combustibles fósiles en la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del PI.

Notar que si el PI no incluye la generación de energía eléctrica $EGEI_{electr,i} = 0$, por lo tanto las emisiones serian:

$$EGEI_{sp,i} = EGEI_{quema,i}$$

La cuantificación de las emisiones GEI que son liberadas a la atmósfera se realiza siguiendo el mismo procedimiento empleado para la tipología anterior, es decir, multiplicando la producción de metano anual del paso anterior por el potencial de calentamiento global del metano $(GWP_{\mathrm{CH}_{A}})$ tal como se detalla en la siguiente ecuación:

$$EGEI_{quema,i} = Q_{CH_4,i} * GWP_{CH_4}$$

Dónde:

 $EGEI_{quema,i}$

: Emisiones GEI totales generadas en el año i por la liberación del metano producido por el tratamiento anaerobio de las aguas residuales y que se podrían evitar por la implementación del PI (en t CO₂eq/año).

 $Q_{CH_a,i}$: Cantidad de metano producido en el año i (en t CH_a).

 GWP_{CH_4} : Potencial de calentamiento global del metano (en t CO_2eq/t CH_4).

Las emisiones GEI totales generadas por el uso de combustibles fósiles en la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del PI resultan del producto de la producción diaria de electricidad por quema de metano (resultado del paso anterior) por el factor de emisión del SEIN, bajo el siguiente detalle:

$$EGEI_{electr,i} = Q_{electr,i} * \frac{FE_{SEIN}}{1000}$$

Dónde:

 $EGEI_{electr,i}$

: Emisiones GEI totales generadas en el año i por el uso de combustibles fósiles en la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del PI.

 $Q_{electr,i}$: Producción de electricidad por quema de metano (kWh/año).

 FE_{SEIN} : Factor de emisión del SEIN (ton CO_2 eq/MWh)

2.2.3.2 Cuantificación de las emisiones GEI totales en la situación con proyecto de inversión

En la situación con PI se generan emisiones GEI equivalentes a la cantidad por lo que la diferencia de emisiones GEI entre ambas situaciones (sin PI y con PI) representan las emisiones GEI evitadas por la implementación del PI.

2.2.4 Caso Práctico N° 02: Planta de Tratamiento de Aguas Residuales 10

El PI "Planta de Tratamiento de Aguas Residuales de San Jerónimo – Cusco" a cargo de la EPS SEDACUSCO plantea la construcción de una PTAR para la ciudad del Cusco. Su impacto es la disminución de los casos de enfermedades diarreicas, parasitarias y dermatológicas, permitiendo la reducción de gastos en servicios de salud y del índice de morbilidad por enfermedades de origen hídrico. El PI incluye digestión anaerobia de lodos con recolección y aprovechamiento energético del biogás.

A continuación, se muestran algunos datos generales del PI que serve para la valorización del beneficio por reducción de emisiones GEI.:

Tecnología de tratamiento: Digestor anaeróbico de lodos.

Población beneficiada: 291,000 personas al año 2021.

Horizonte de evaluación del PI: 20 años.

2.2.4.1 Primer paso: Cuantificación de la demanda del proyecto de inversión

La cantidad de población beneficiaria del PI se muestra en la siguiente tabla y resulta de la aplicación de las tasas de crecimiento esperadas de la población del área de influencia por el porcentaje de cobertura que se espera alcanzar con el PI.

Tabla 6: Cuantificación de la demanda con proyecto de inversión

Año	Población	Tasa de crecimiento	Población objetivo	Cobertura
	Hab.	%	Hab.	%
0	386,461	2.15%		
1	394,770	2.15%	291,000	74%
2	403,257	2.15%	301,522	75%
3	411,927	2.15%	312,424	76%
10	466,483	1.40%	396,511	85%
15	499,571	1.30%	424,635	85%
20	532,898	1.30%	452,964	85%

Producción anual de metano

Se debe calcular la producción anual de metano a partir de la población objetivo del PI aplicando la siguiente formula:

$$Q_{CH_4,i} = \frac{Pob_i \frac{TP_{CH_4}}{1000} * \rho_{CH_4}}{1000} * 365$$

Dónde:

 $Q_{\mathit{CH}_4,i}$: Cantidad de metano producido en el año i (t CH_4).

¹⁰ La información de esta sección ha sido extraída de GIZ, (2018, b).

 Pob_i : Población objetivo del PI en el año i (hab).

 $\mathit{TP}_{\mathit{CH}_4}$: Tasa de producción diaria de metano por tipo de tecnología de tratamiento de aguas

residuales (I CH₄/hab-día).

 ρ_{CH_4} : Densidad de metano en condiciones normales (kg/m³) (0.6670 kg/m³).

La tasa de producción de metano (TP_{CH_4}) toma distintos valores de acuerdo a la tecnología de tratamiento de aguas residuales que se desea implementar:

Tasas de producción de metano por tecnología de tratamiento de aguas residuales (TP_{CH_A})

Tecnología	Tasas de producción de CH₄
Reactor Anaeróbico de Flujo	
Ascendente (UASB)	10.2 l CH₄/hab-día
Laguna Anaerobia	9.4 l CH₄/hab-día
Digestores de Lodo	10.8 l CH₄/hab-día

Fuente: PROBIOGAS, 2015.

El procedimiento se muestra en la siguiente tabla.

Tabla 7: Producción anual de metano

Año	Población objetivo	_	oroducción e metano	Densidad del metano	Días por año	Producción anual de metano (QCH₄)		
	hab	l/hab-día	m³/hab-día	kg/m³	día/año	kg CH ₄ /año	t CH₄/año	
1	291,000	10.80	0.01	0.6670	365	765,130	765.13	
2	301,522	10.80	0.01	0.6670	365	792,795	792.79	
3	312,424	10.80	0.01	0.6670	365	821,460	821.46	
10	396,511	10.80	0.01	0.6670	365	1,042,551	1,042.55	
15	424,635	10.80	0.01	0.6670	365	1,116,500	1,116.50	
20	452,964	10.80	0.01	0.6670	365	1,190,984	1,190.98	

Generación de electricidad por quema de metano

La producción anual de electricidad es el producto de la producción anual de metano por la energía potencial del metano por la eficiencia de la tecnología de conversión del biogás en energía eléctrica de acuerdo con la siguiente formula:

$$Q_{electricidad,i} = \frac{Q_{CH_4,i}*1000}{\rho_{CH_4}}*EP_{CH_4}*EE_{CH_4}$$

Dónde:

 $Q_{electricidad,i}$: Producción de electricidad por quema de metano (kWh/año).

 $Q_{CH_4,i}$: Producción de metano diaria (t CH₄/año).

 ρ_{CH_4} : Densidad de metano en condiciones normales (kg/m³) (0.6670 kg/m³).

 EP_{CH_4} : Energía potencial del metano (kWh/m³).

 EE_{CH_4} : Eficiencia de la tecnología de conversión en energía eléctrica (%).

Al calcular la producción de electricidad a través del uso del metano. La energía potencial del metano se asume en 10 kWh/m³ y se asume una eficiencia de la tecnología de conversión del biogás en energía eléctrica igual a 40%¹¹¹. El procedimiento de cálculo se muestra en la siguiente tabla.

Tabla 8: Generación de electricidad por quema de metano

Año	Producció	n anual de meta	no (QCH₄)	Energía potencial del metano	Eficiencia conversión de biogás en energía eléctrica	Producción de electricidad por quema de metano
	t CH₄/año	kg CH₄/año	m³ CH₄/año	kWh/m³	%	kWh/año
1	765	765,130	1,147,122	10	0.4	4,588,488
2	793	792,795	1,188,598	10	0.4	4,754,392
3	821	821,460	1,231,573	10	0.4	4,926,294
10	1,043	1,042,551	1,563,045	10	0.4	6,252,180
15	1,116	1,116,500	1,673,912	10	0.4	6,695,650
20	1,191	1,190,984	1,785,583	10	0.4	7,142,330

2.2.4.2 Segundo paso: Cuantificación de las emisiones GEI en la situación sin proyecto de inversión¹²

Las emisiones GEI generadas en la situación sin PI corresponden a las emisiones de metano que son liberadas a la atmósfera producto del tratamiento anaerobio de las aguas residuales en las PTAR y que se podrían evitar mediante la recolección y quema del metano, más las emisiones GEI generadas en la producción de electricidad (utilizando combustibles fósiles) del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar si se genera electricidad a través de la quema de metano recolectado en la PTAR, tal como se especifica en la siguiente ecuación:

$$EGEI_{\text{sp},i} = EGEI_{\text{quema},i} + EGEI_{\text{electricidad},i}$$

 $EGEI_{\mathrm{sp},i}$: Emisiones GEI totales en la situación sin PI en el año i (en t $\mathrm{CO}_2\mathrm{eq/año}$).

 $\mathit{EGEI}_{\mathrm{quema},i}$: Emisiones GEI totales generadas en el año i por la liberación del metano producido por el

tratamiento anaerobio de las aguas residuales y que se podrían evitar por la

implementación del PI (en t CO₂eq/año).

 $EGEI_{electricidad,i}$: Emisiones GEI totales generadas en el año i por el uso de combustibles fósiles en la

producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se

podrían evitar por la generación de electricidad por la implementación del PI.

La cuantificación de las emisiones GEI $(EGEI_{\mathrm{quema},i})$ son las que se han obtenido en la tabla 09 del presente documento, que son el resultado de multiplicar la producción de metano por el potencial de calentamiento global de metano (para PTAR toma el valor de 34).

¹¹ https://www.gob.mx/cms/uploads/attachment/file/265430/Guia_lodos_2017.pdf

¹² La presente metodología está basada en la metodológica *TOOL14 "Project and leakage emissions from anaerobic digesters"* (UNFCCC, 2017), se puede utilizar para calcular la producción de metano.

Mientras que las emisiones GEI totales generadas por el uso de combustibles fósiles en la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del PI resultan del producto de la producción diaria de electricidad en la quema de metano (resultado del paso anterior) por el factor de emisión del SEIN (ver tabla 12):

$$EGEI_{electricidad,i} = Q_{electricidad,i} * \frac{FE_{SEIN}}{1 \ 000}$$

Dónde:

EGEI_{electricidad, i} : Emisiones GEI totales generadas en el año i por el uso de combustibles fósiles en la producción

de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la

generación de electricidad por la implementación del PI.

 $Q_{electricidad,i}$: Producción de electricidad por quema de metano (kWh/año).

 FE_{SEIN} : Factor de emisión del SEIN (ton CO_2 eq/MWh)

Tabla 9: Cuantificación de emisiones GEI por recolección y quema de metano

Año	Producción anual de metano (QCH ₄)	Potencial de calentamiento global del metano	Emisiones GEI por recolección y quema de metano		
	t CH₄/año	t CO₂eq/t CH₄	t CO₂eq/año		
1	765.13	34.00	26,014		
2	792.79	34.00	26,955		
3	821.46	34.00	27,930		
10	1,042.55	34.00	35,447		
15	1,116.50	34.00	37,961		
20	1,190.98	34.00	40,493		

Las emisiones GEI totales generadas por el uso de combustibles fósiles en la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del PI resultan de la producción diaria de electricidad por quema de metano (resultado del paso anterior) por el factor de emisión del SEIN (ver Tabla 12).

Tabla 10: Cuantificación de emisiones GEI evitadas por generación de electricidad

Año	Producción anual de e quema de me	· ·	Factor de emisión del SEIN	Emisiones por generación de electricidad	
	kWh/año	MWh/año	ton CO ₂ /MWh	ton CO₂/año	
1	4,588,488	4,588.49	0.4521	2,074.55	
2	4,754,392	4,754.39	0.4521	2,149.56	
3	4,926,294	4,926.29	0.4521	2,227.28	
10	6,252,180	6,252.18	0.4521	2,826.74	
15	6,695,650	6,695.65	0.4521	3,027.24	
20	7,142,330	7,142.33	0.4521	3,229.19	

De esta manera, las emisiones GEI totales en la situación sin PI es el resultado de la sumatoria de las emisiones GEI evitadas por recolección y quema de metano y las emisiones GEI evitadas por generación de electricidad (ver tabla 13).

Tabla 11: Emisiones GEI evitadas totales en la situación sin proyecto de inversión

Año	Emisiones GEI evitadas por recolección y quema de metano t CO2eq/año	Emisiones GEI evitadas por generación de electricidad t CO ₂ eq/año	Emisiones GEI evitadas en la situación sin PI ton CO2/año	
1	26,014.43	2,074.55	28,088.98	
2	26,955.02	2,149.56	29,104.58	
3	27,929.62	2,227.28	30,156.90	
10	35,446.73	2,826.74	38,273.47	
15	37,960.99	3,027.24	40,988.22	
20	40,493.44	3,229.19	43,722.63	

2.2.4.3 Tercer paso: Cuantificación de las emisiones GEI en la situación con proyecto de inversión

En la situación con PI no se generan emisiones GEI por lo que la diferencia de emisiones GEI entre ambas situaciones (sin PI y con PI) representan las emisiones GEI evitadas por la implementación del PI.

2.2.4.4 Cuarto paso: Valorización del beneficio por reducción de emisiones GEI

Los beneficios por reducción de emisiones GEI resultan del producto de la diferencia entre las emisiones GEI totales sin PI y con PI por el valor del PSC igual a US\$ 7.17 por tonelada equivalente de carbono. Para el caso práctico, los resultados obtenidos se exponen en la Tabla 14.

Tabla 12: Valorización del beneficio por reducción de emisiones GEI

Año	Emisiones GEI en la situación sin PI	Emisiones GEI en la situación con PI	Precio social del carbono	Beneficio anual por emisiones evitadas de GEI	Beneficio anual por emisiones evitadas de GEI	
	t CO₂eq/año	ton CO ₂ /año	US\$/ton CO ₂	US\$/año	S//año	
1	28,088.98	-	7.17	201,397.99	664,613.37	
2	29,104.58	-	7.17	208,679.83	688,643.44	
3	30,156.90	-	7.17	216,224.97	713,542.40	
10	38,273.47	-	7.17	274,420.77	905,588.54	
15	40,988.22	-	7.17	293,885.55	969,822.32	
20	43,722.63	-	7.17	313,491.28	1,034,521.22	

2.2.5 Aplicativo: Calculo del costo por externalidades causadas por emisiones de GEI

En el aplicativo solo se debe registrar la población objetivo, el horizonte de evaluación, el tipo de cambio, responder a la pregunta si ¿el PI incluye generación de energía? y la eficiencia de la

tecnología. Para este caso el PI otorga un beneficio de S/ 627 mil el primer año hasta llegar a los S/ 977 mil en el vigésimo año.

Cálculo del costo por externalidades causadas por emisiones de efecto invernadero: Planta de Tratamiento de Aguas Residuales

Año	Población objetivo	Producción anual de metano (QCH4)	Producción de electricidad por quema de metano	Emisiones evitadas de GEI por recolección y quema de metano	Emisiones por generación de electricidad	Emisiones GEI sin proyecto	Emisiones GEI con proyecto	Emisiones GEI evitadas con la implementación del proyecto	Beneficio anual por emisiones GEI evitadas
	Hab.	t CH4/año	MWh/año	t CO2eq/año	ton CO2 eq/año	ton CO2/año	ton CO2/año	ton CO2/año	S./año
0									
1	291,000	723	4,334	24,569	1,959	26,528	0	26,528	627,688
2	301,522	749	4,490	25,458	2,030	27,488	0	27,488	650,383
3	312,424	776	4,653	26,378	2,103	28,481	0	28,481	673,899
4	323,720	804	4,821	27,332	2,179	29,511	0	29,511	698,265
5	334,275	830	4,978	28,223	2,251	30,473	0	30,473	721,033
6	345,174	857	5,140	29,143	2,324	31,467	0	31,467	744,543
7	356,429	885	5,308	30,093	2,400	32,493	0	32,493	768,820
8	368,051	914	5,481	31,075	2,478	33,553	0	33,553	793,888
9	380,052	944	5,660	32,088	2,559	34,647	0	34,647	819,774
10	396,511	985	5,905	33,477	2,670	36,147	0	36,147	855,275
11	402,062	998	5,988	33,946	2,707	36,653	0	36,653	867,249
12	407,691	1,012	6,071	34,421	2,745	37,166	0	37,166	879,391
13	413,398	1,027	6,156	34,903	2,783	37,687	0	37,687	891,702
14	419,186	1,041	6,243	35,392	2,822	38,214	0	38,214	904,186
15	424,635	1,054	6,324	35,852	2,859	38,711	0	38,711	915,940
16	430,156	1,068	6,406	36,318	2,896	39,214	0	39,214	927,848
17	435,748	1,082	6,489	36,790	2,934	39,724	0	39,724	939,910
18	441,412	1,096	6,574	37,269	2,972	40,240	0	40,240	952,128
19	447,151	1,110	6,659	37,753	3,011	40,764	0	40,764	964,506
20	452,964	1,125	6,746	38,244	3,050	41,293	0	41,293	977,045

2.3 Incorporación del Precio Social del Carbono en proyectos de inversión de rellenos sanitarios con sistema de captura y quema de biogás

La generación de los residuos sólidos urbanos (RSU) en la actualidad es considerada como uno de los problemas ambientales más dañinos, debido que contamina agua, aire y suelo por las sustancias que se liberan en las reacciones químicas de su descomposición. Como consecuencia directa de la falta de rellenos sanitarios en Perú, la mayoría de las ciudades poseen únicamente botaderos de basura a cielo abierto.

La disposición de residuos de manera incorrecta impacta la calidad del aire debido a emisión de malos olores y gases, como el CH₄ y CO₂ generados en el proceso de descomposición de la materia orgánica. La construcción de rellenos sanitarios con sistema de captura y quema de GEI es una tecnología que reduce la contaminación ambiental y adicionalmente permite el aprovechamiento del biogás para la generación de energía.

La decisión de capturar y promover la quema del metano y su aprovechamiento energético ya obtiene resultados positivos desde el punto de vista ambiental cuando se compara con rellenos sin quema del gas o a botaderos. Como en el caso de la quema de biogás de PTAR, se reduce el CH₄ a CO₂, poseyendo este último un potencial de calentamiento global 28 veces más bajo que el CH₄ (IPCC, 2014).

En el caso del sector de residuos sólidos se ha considerado la aplicación de la metodología general de incorporación del PSC en la siguiente tipología de PI.

PI de rellenos sanitarios con sistema de captura y quema de biogás

Cabe mencionar que la aplicación del beneficio por reducción de emisiones de GEI se aplica solamente a quema del biogás.

2.3.1 Descripción actual del servicio de tratamiento de rellenos sanitarios

El servicio de manejo integral de residuos sólidos comprende las etapas del ciclo de vida de los residuos sólidos, siendo éstos: generación, segregación, almacenamiento, barrido y limpieza, recolección y transporte, transferencia, reaprovechamiento y disposición final, así como los diversos aspectos vinculados, tales como los políticos, institucionales, sociales, financieros, económicos, técnicos, ambientales y de salud.

Al respecto, se debe definir el área de influencia del estudio, el que debe estar enmarcado dentro del ámbito geográfico de la localidad o conjunto de localidades vecinas donde se focaliza el problema. Se debe hacer una breve descripción del clima y condiciones geográficas del área de influencia.

Se debe desarrollar el diagnóstico socioeconómico de la población del área de influencia del PI, determinándose indicadores demográficos, niveles de educación, niveles de salud, calidad de las viviendas, condiciones económicas, niveles de ocupación, entre otros. A estos efectos se deberán describir las siguientes variables:

- · Población afectada.
- Salud, higiene y saneamiento básico en el área de influencia del PI.
- Características de las viviendas y del entorno urbano.
- Caracterización de los residuos sólidos, el que permite determinar las características físicas (generación per cápita, composición, densidad, entre otros), incluyendo el cálculo de la humedad), biológicas y químicas de los residuos sólidos municipales.
- Clima predominante del área de influencia del PI.

2.3.2 Cuantificación de emisiones GEI para la situación con y sin proyecto de inversión

La demanda por el servicio está representada por el volumen total de residuos sólidos municipales producidos que se generan y requieren ser manejados adecuadamente. Su cuantificación, asimismo, deberá ser en cada uno de los servicios que forman parte del PI. Para estimar la demanda de los servicios que el PI ofrecerá es necesario tener en cuenta la población objetivo del PI.

La demanda del servicio de disposición final está determinada por la totalidad de residuos sólidos municipales producidos.

Producción anual de metano

La herramienta metodológica *TOOL04 "Emisiones from solid waste disposal sites"* (UNFCCC, 2017)¹³ permite calcular las emisiones de metano evitadas a través de la siguiente ecuación:

$$Q_{\mathrm{CH}_4} = \varphi_y (1 - f_y) \sum_{x=1}^t Default_x * W_x$$

27

 $^{^{13}\} https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-04-v8.0.pdf$

Dónde:

 $Q_{\mathrm{CH_4}}$: Emisiones de metano que se producen en el año, generadas a partir de la

eliminación de desechos en un relleno sanitario durante un período de tiempo que

termina en el año (t CH₄/año).

 $arphi_y$: Factor de corrección del modelo para tener en cuenta las incertidumbres del

modelo para el año y.

 f_y : Fracción de metano capturado en el relleno sanitario y quemado o usado de otra

manera que evita las emisiones de metano a la atmósfera en el año y.

 $Default_x$: Factor de decaimiento y emisión de metano.

 W_x : Cantidad total de residuos sólidos dispuestos en el relleno sanitario en el año x(t).

Generación de electricidad por quema de biogás (solo se utiliza cuando la tipología de relleno sanitario incluye generación de energía eléctrica)

La producción anual de electricidad es el producto de la producción anual de metano por la energía potencial del metano y por la eficiencia de la tecnología de conversión del biogás en energía eléctrica de acuerdo con la siguiente formulación:

$$Q_{electr,i} = \frac{Q_{CH_4,i} * 1000}{\rho_{CH_4}} * EP_{CH_4} * EE_{CH_4}$$

Dónde:

 $Q_{electr.i}$: Producción de electricidad por quema de metano (kWh/año).

 $Q_{CH_4,i}$: Producción de metano diaria (t $CH_4/a\tilde{n}o$).

 ρ_{CH_4} : Densidad de metano en condiciones normales (kg/m³) (0.6670 kg/m³).

 EP_{CH_4} : Energía potencial del metano (kWh/m³).

 EE_{CH_A} : Eficiencia de la tecnología de conversión en energía eléctrica (%).

2.3.2.1 Cuantificación de emisiones GEI totales para la situación sin proyecto de inversión

Las emisiones GEI generadas en la situación sin PI corresponden a las emisiones de metano que son liberadas a la atmósfera producto del tratamiento de los residuos sólidos en los rellenos sanitarios y que se podrían evitar mediante la recolección y quema del metano, más las emisiones GEI generadas en la producción de electricidad (utilizando combustibles fósiles) del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar si se genera electricidad a través de la quema de metano recolectado en la PTAR, tal como se especifica en la siguiente ecuación:

$$EGEI_{sp,i} = EGEI_{quema,i} + EGEI_{electr,i}$$

 $EGEI_{sp,i}$: Emisiones GEI totales en la situación sin PI en el año i (en t CO_2 eq/año).

 $EGEI_{quema,i}$

: Emisiones GEI totales generadas en el año i por la liberación del metano producido por el tratamiento anaerobio de las aguas residuales y que se podrían evitar por la implementación del PI (en t CO₂eq/año).

 $EGEI_{electr,i}$

: Emisiones GEI totales generadas en el año i por el uso de combustibles fósiles en la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del PI.

Notar que si el PI no incluye la generación de energía eléctrica $EGEI_{electr,i} = 0$, por lo tanto las emisiones serian:

$$EGEI_{sp,i} = EGEI_{quema,i}$$

La cuantificación de las emisiones GEI que son liberadas a la atmósfera se realiza siguiendo el mismo procedimiento empleado para la tipología anterior; es decir, multiplicando la producción de metano anual del paso anterior por el potencial de calentamiento global del metano (GWP_{CH_4}) y la fracción de metano es igual a $f_{\gamma}=0$ tal como se detalla en la siguiente ecuación:

$$EGEI_{quema,i} = \varphi_y(1 - f_y) \sum_{x=1}^{t} Default_x * W_x * GWP_{CH_4}$$

O que es lo mismo decir:

$$EGEI_{quema,i} = Q_{CH_4} * GWP_{CH_4}$$

Dónde:

 $EGEI_{quema,i}$

: Emisiones GEI totales generadas en el año i por la liberación del metano producido por el tratamiento anaerobio de las aguas residuales y que se podrían evitar por la implementación del PI (en t CO₂eq/año).

 φ_y

: Factor de corrección del modelo para tener en cuenta las incertidumbres del modelo para el año $^{\it Y}$.

 f_{y}

: Fracción de metano capturado en el relleno sanitario y quemado o usado de otra manera que evita las emisiones de metano a la atmósfera en el año $_Y$. Este valor puede variar de acuerdo con la tecnología de recolecta y quema utilizada, la metodología MDL no presenta valores típicos, algunas publicaciones presentan valores default (Por ejemplo: WB, 2003). Se recomienda que una vez que el relleno está en operación se realicen mediciones y monitoreo de la cantidad efectivamente quemada (%). En la situación sin PI (sin sistema de captura y quema) $f_V = 0$.

 GWP_{CH_4}

: Potencial de calentamiento global del metano. Este valor debe ser escogido de acuerdo con la publicación más reciente del IPCC o con el valor utilizado por el sector¹⁴. En el caso de residuos, el MINAM utiliza el factor 21, y este valor será utilizado en este estudio (t CO₂eq/t CH₄).

¹⁴ Valores típicos son:

^{21 (}IPCC,1995),

^{28 (}IPCC, 2014) – Es la misma metodología del año 1995, no considera el "climate-carbon feedbacks".

^{34 (}IPCC, 2014) – Metodología actualizada considerando el "climate-carbon feedbacks".

 Q_{CH_4} : Emisiones de metano que se producen en el año y generadas a partir de la eliminación de desechos en un relleno sanitario durante un período de tiempo que termina en el año y (t CH_4 /año).

Por otro lado, para las emisiones GEI totales generadas por el uso de combustibles fósiles en la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del PI resultan del producto de la producción diaria de electricidad por quema de metano (resultado del paso anterior) por el factor de emisión del SEIN, bajo el siguiente detalle:

$$EGEI_{electr,i} = Q_{electr,i} * \frac{FE_{SEIN}}{1000}$$

Dónde:

 $\mathit{EGEI}_{\mathrm{electr},i}$: Emisiones GEI totales generadas en el año i por el uso de combustibles fósiles en

la producción de electricidad del Sistema Eléctrico Interconectado Nacional (SEIN) que se podrían evitar por la generación de electricidad por la implementación del

PI.

 $Q_{electr,i}$: Producción de electricidad por quema de metano (kWh/año).

 FE_{SEIN} : Factor de emisión del SEIN (ton CO_2eq/MWh)

2.3.2.2 Cuantificación de emisiones GEI totales para la situación con proyecto de inversión

En la situación con PI las emisiones de metano no son liberadas a la atmósfera por lo que corresponde cuantificar su equivalente de emisiones CO_2 con la siguiente ecuación y considerando ($f_y = x\%$).

$$EGEI_{cp,i} = \varphi_y(1 - f_y) \sum_{x=1}^{t} Default_x * W_x * GWP_{CH_4}$$

Dónde:

 f_y : Fracción de metano capturado en el relleno sanitario y quemado o usado de otra manera que evita las emisiones de metano a la atmósfera en el año y. Para este caso N°4, se consideró el valor del WB (2003) f_y = 0.5.

2.3.3 Caso práctico N° 04: Gestión Integral de los Residuos Sólidos¹⁵

El PI "Mejoramiento y ampliación de la gestión integral de los residuos sólidos municipales y adecuada disposición final en la ciudad de Huánuco" consiste en el mejoramiento de la gestión integral de residuos sólidos. La alternativa elegida está diseñada dentro del marco de la integralidad en el manejo y/o gestión de residuos sólidos municipales y tiene como objetivo la eficiente gestión integral del servicio de residuos sólidos municipales con activa participación de la población de la ciudad de Huánuco y adecuado servicio de disposición final de los residuos sólidos municipales la cual incluirá la generación de energía eléctrica.

¹⁵ La información de esta sección ha sido extraída de GIZ, (2018, c).

2.3.3.1 Primer paso: Cuantificación de la demanda del proyecto de inversión

La proyección de la demanda servida por el PI en los 10 años de evaluación se muestra en la tabla 15 y resulta de la aplicación de las tasas de crecimiento esperadas de la población del área de influencia del PI por las cantidades de generación de residuos municipales producto de información proveniente de estudios de campo.

Tabla 13: Cuantificación de la demanda del proyecto de inversión

		Tasa de	Generación de residuos municipal							
Año	Población	crecimiento	Domiciliaria No domiciliaria		Cantidad de residuos sólidos a disponer (Wx)					
	hab	%	t/día	t/día	t/día	t/año				
	161,574		75.79	26.28	102.07	37,255.55				
1	163,230	1.03%	77.33	26.55	103.88	37,916.20				
2	164,902	1.03%	78.91	26.82	105.73	38,591.45				
3	166,592	1.03%	80.52	27.1	107.62	39,281.30				
4	168,299	1.03%	82.16	27.38	109.54	39,982.10				
5	170,024	1.03%	83.83	27.66	111.49	40,693.85				
6	171,766	1.03%	85.54	27.94	113.48	41,420.20				
7	173,526	1.03%	87.29	28.23	115.52	42,164.80				
8	175,304	1.03%	89.06	28.52	117.58	42,916.70				
9	177,100	1.03%	90.88	28.81	119.69	43,686.85				
10	178,915	1.03%	92.73	29.1	121.83	44,467.95				

Producción anual de metano

La producción de metano aplicando la siguiente formula:

tiempo que termina en el año t (CH₄/año).

$$Q_{CH_4,t} = \varphi_t(1 - f_t) \sum_{x=1}^{t} Default_x * W_x$$

Dónde:

 $Q_{CH_4,t}$: Son las emisiones de metano de referencia que se producen en el año y generadas a partir de la eliminación de desechos en un relleno sanitario durante un período de

 φ_t : Factor de corrección del modelo para tener en cuenta las incertidumbres del modelo para el año t.

 f_t : Fracción de metano capturado en el relleno sanitario y quemado o usado de otra manera que evita las emisiones de metano a la atmósfera en el año t.

 $Default_x$: Factor de decaimiento y emisión de metano. Este valor debe ser escogido con base en el clima predominante del área de influencia del Pl¹6 y la tabla que se encuentran en el aplicativo Excel¹7, el cual se publica adjunto a este documento, clasificado de acuerdo con el clima en Huánuco y las informaciones del Pl tal como "Clasificación: de precipitación efectiva lluviosa, con otoño e invierno seco, con eficiencia de temperatura semifrío y humedad atmosférica húmeda"

 W_{χ} : Cantidad total de residuos sólidos dispuestos en el relleno sanitario en el año t. obtenidos cuando se calculó la demanda del PI.

¹⁶ Fuente: Methodological tool: Emissions from solid waste disposal sites, 2017. https://cdm.unfccc.int/methodologies/PAmethodologies/tools/am-tool-04-v8.0.pdf

¹⁷ Este valor debe ser escogido con base en el clima predominante del área de influencia del PI

Tabla 14: Producción anual de metano

Año	Factor de decaimiento y emisión de metano	Cantidad residuos sólidos a disponer Wx		Producción de metano por año								Producción anual de metano	
		t/año	t CH ₄	t CH ₄	t CH ₄	t CH ₄	t CH ₄	t CH ₄	t CH ₄	t CH ₄	t CH ₄	t CH4	t CH₄/año
1	0.003382	37,916.20	128.23										128.23
2	0.002913	38,591.45	110.45	130.52									240.97
3	0.002511	39,281.30	95.21	112.42	132.85								340.47
4	0.002163	39,982.10	82.01	96.90	114.43	135.22							428.56
5	0.001861	40,693.85	70.56	83.47	98.64	116.47	137.63						506.77
6	0.001599	41,420.20	60.63	71.82	84.97	100.40	118.54	140.08					576.43
7	0.001371	42,164.80	51.98	61.71	73.10	86.48	102.18	120.66	142.60				638.72
8	0.001174	42,916.70	44.51	52.91	62.81	74.41	88.02	104.01	122.83	145.14			694.64
9	0.001004	43,686.85	38.07	45.31	53.85	63.93	75.73	89.59	105.88	125.02	147.75		745.12
10	0.000859	44,467.95	32.57	38.75	46.12	54.82	65.07	77.08	91.20	107.76	127.26	150.39	791.02

2.3.3.2 Segundo paso: Cuantificación de emisiones GEI totales para la situación sin proyecto de inversión

En la situación sin PI las emisiones de metano son liberadas a la atmósfera por lo que la producción anual de metano se obtiene multiplicando el factor de corrección del modelo (en este caso, $\varphi_t = 1$) y por la fracción de metano que no es capturado y quemado ($f_t = 0$).

Tabla 15: Cuantificación de emisiones GEI en la situación sin proyecto de inversión

Años	Factor de corrección del	Metano capturado y quemado	Metano producido a partir de residuos	Emisiones GEI en la situación sin PI	
	modelo ($oldsymbol{arphi}_t$)	%	t CH₄/año	t CH₄/año	
1	1.00	0%	128.23	128.23	
2	1.00	0%	240.97	240.97	
3	1.00	0%	340.47	340.47	
4	1.00	0%	428.56	428.56	
5	1.00	0%	506.77	506.77	
6	1.00	0%	576.43	576.43	
7	1.00	0%	638.72	638.72	
8	1.00	0%	694.64	694.64	
9	1.00	0%	745.12	745.12	
10	1.00	0%	791.02	791.02	

2.3.3.3 Tercer paso: Cuantificación de las emisiones GEI en la situación con proyecto de inversión

La situación con PI se generan emisiones GEI equivalente a la fracción de metano no capturado en el relleno sanitario y quemado o usado de otra manera que evita las emisiones de metano a

la atmósfera en el año t que son las que por lo que la diferencia de emisiones GEI entre ambas situaciones (sin PI y con PI) representan las emisiones GEI evitadas por la implementación del PI.

Tabla 16: Cuantificación de emisiones GEI en la situación con proyecto de inversión

Año	Factor de corrección del modelo	Metano capturado y quemado	Metano producido a partir de residuos	Emisiones GEI en la situación con PI	
		%	t CH₄/año	t CH₄/año	
1	1.0	65%	128.23	45	
2	1.0	65%	240.97	84	
3	1.0	65%	340.47	119	
4	1.0	65%	428.56	150	
5	1.0	65%	506.77	177	
6	1.0	65%	576.43	202	
7	1.0	65%	638.72	224	
8	1.0	65%	694.64	243	
9	1.0	65%	745.12	261	
10	1.0	65%	791.02	277	

2.3.3.4 Cuarto paso: Valorización del beneficio por reducción de emisiones GEI

En los casos en que las emisiones de GEI son diferentes al dióxido de carbono (CO_2), previamente, se debe convertir las emisiones evitadas (netas) de GEI -que resultan de la diferencia entre las emisiones GEI totales sin PI y las emisiones GEI totales con PI - por el valor del potencial de calentamiento global ($GPW=21\ tCO_2eq/CH_4$). Posterior a ello se procede con la valorización de los beneficios multiplicando esta diferencia por el valor del PSC = 7.17 US\$/ tCO_2eq estipulado por el Sistema Nacional de Programación Multianual y Gestión de Inversiones (Decreto Legislativo N° 1252), Directiva N° 001-2019-EF/63.01, Anexo N° 11: Parámetros de Evaluación Social", de la citada Directiva.

Tabla 17: Valorización del beneficio por reducción de emisiones GEI

Año	Emisiones GEI en la situación sin PI	Emisiones GEI en la situación con PI	Emisiones evitadas de GEI	Potencial de calentamiento global del metano	Emisiones GEI en la situación con PI	Precio social del carbono	Beneficio anual por emisiones GEI evitadas	Beneficio anual por emisiones evitadas de GEI
	t CH₄/año	t CH₄/año	t CH₄/año	t CO₂eq/t CH4	ton CO₂/año	US\$/ton CO₂	US\$/año	S/ / año
1	128.2	44.9	83.4	21.00	1750.4	7.17	12,550.19	41,415.62
2	241.0	84.3	156.6	21.00	3289.2	7.17	23,583.48	77,825.48
3	340.5	119.2	221.3	21.00	4647.5	7.17	33,322.34	109,963.73
4	428.6	150.0	278.6	21.00	5849.9	7.17	41,943.55	138,413.73
5	506.8	177.4	329.4	21.00	6917.3	7.17	49,597.36	163,671.29
6	576.4	201.8	374.7	21.00	7868.3	7.17	56,415.64	186,171.61
7	638.7	223.6	415.2	21.00	8718.5	7.17	62,511.38	206,287.56
8	694.6	243.1	451.5	21.00	9481.8	7.17	67,984.49	224,348.83
9	745.1	260.8	484.3	21.00	10170.9	7.17	72,925.71	240,654.83
10	791.0	276.9	514.2	21.00	10797.4	7.17	77,417.20	255,476.76

2.3.4 Aplicativo: Calculo del costo por externalidades causadas por emisiones de GEI

En el aplicativo solo se debe registrar la cantidad de residuos sólidos a disponer, el horizonte de evaluación, el tipo de cambio, responder a la pregunta si ¿el PI incluye generación de energía? y la fracción de metano capturado y quemado. Para este caso el PI otorga un beneficio de S/42 mil el primer año hasta llegar a los S/259 mil en el décimo año.

			Cálcu	lo del costo por	· externalidad	les causada	s nor emis	siones de efe	cto invern	idero:		
			Cuicu	io dei costo poi		Residuos S		nones de ere	cto miverni	idero.		
Año	Cantidad de residuos solidos a disponer por año			Emisiones evitadas de GEI por recolección y quema de metano	Emisiones evitadas por generación de electricidad	Emisiones GEI sin proyecto	Emisiones GEI con proyecto	Emisiones GEI evitadas con la implementación del proyecto	Beneficio anual por emisiones GEI evitadas	¿Proyecto incluye generacion de energia?	Si	
	t./año	t CH4/año	MWh/año	t CO2eq/año	ton CO2 eq/año	ton CO2/año	ton CO2/año	ton CO2/año	S./año	<u></u>		
0	37,256									Horizonte de Evaluación	años	
1	37,916	128	961	2,693	435	3,127	1,346	1,781	42,141	Tipo de cambio	s/.	1
2	38,591	241	1,806	5,060	817	5,877	2,530	3,347	79,188	Precio Social del carbono	US\$/ton CO2	
3	39,281	340	2,552	7,150	1,154	8,304	3,575	4,729	111,890	Factor de emisión del SEIN	ton CO2/MWh	
4	39,982	429	3,213	9,000	1,452	10,452	4,500	5,952	140,838	Potencial de calentamiento global del metano	t CO2eq/t CH4	
5	40,694	507	3,799	10,642	1,717	12,360	5,321	7,038	166,538			
6	41,420	576	4,321	12,105	1,954	14,059	6,053	8,006	189,432			
7	42,165	639	4,788	13,413	2,165	15,578	6,707	8,871	209,900	Factor de correción del modelo del modelo	φ	
8	42,917	695	5,207	14,587	2,354	16,942	7,294	9,648	228,278	Fraccion de metano capturado	ft	i
9	43,687	745	5,586	15,648	2,525	18,173	7,824	10,349	244,869			
10	44,468	791	5,930	16,611	2,681	19,292	8,306	10,986	259,951	Dersidad del metano	kg/m3	
										Energia potencial del metano	kWh/m³	1
										Fracción de metano capturado y quemado	%	
												_

Bibliografía

Aguilera Rosa, et al (2011). Evaluación Social de Proyectos. Orinetaciones para su aplicación. Departamento de Economía – Facultad de Ciencias Sociales, Universidad de la Republica.

Centro de Investigación de la Universidad del Pacífico (2016). Estimación del Precio Social del Carbono para la Evaluación Social de Proyectos en el Perú. Ministerio de Economía y Finanzas. Perú

Contreras, Eduardo (2004). Evaluación social de inversiones públicas: enfoques alternativos y su aplicabilidad para Latinoamérica. Naciones unidas, Cepal.

Fontaine, Ernesto R. (2008). Evaluación Social de Proyectos. Pearson Educación de México.

GIZ, (2018, a). Guía Metodológica para la aplicación del Precio Social del Carbono en la evaluación social de proyectos de inversión del sector de Generación Eléctrica Renovable.

GIZ, (2018, b). Guía Metodológica para la aplicación del Precio Social del Carbono en la evaluación social de proyectos de inversión del sector de saneamiento.

GIZ, (2018, c). Guía Metodológica para la aplicación del Precio Social del Carbono en la evaluación social de proyectos de inversión del sector de residuos sólidos.

Ministerio de Economía y Finanzas (2017). *Anexo N° 10 Parámetros de Evaluación Social.* Directiva para la Formulación y Evaluación en el Marco del Sistema de Programación Multianual y Gestión de Inversiones. Perú.